Global behavior of the difference equation $x_{n+1}=\frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$
نویسندگان
چکیده
منابع مشابه
Global Behavior of the Difference Equation
The main objective of this paper is to study the qualitative behavior for a class of nonlinear rational difference equation. We study the local stability, periodicity, Oscillation, boundedness, and the global stability for the positive solutions of equation. Examples illustrate the importance of the results Keywords— Difference equation, stability, oscillation, boundedness, globale stability an...
متن کاملGlobal Behavior of the Difference Equation xn+1=(p+xn-1)/(qxn+xn-1)
and Applied Analysis 3 In the sequel, let q > 1 4p and . . . , φ, ψ, φ, ψ, . . . the unique prime period-two solution of 1.1 with φ < ψ. Define f ∈ C φ, ψ × φ, ψ , φ, ψ by f ( x, y ) p y qx y 2.2 for any x, y ∈ φ, ψ and g ∈ C φ, ψ , φ, ψ by y∗ g ( y ) p y − y2 qy 2.3 for any y ∈ φ, ψ . Then
متن کاملGlobal Behavior of the Max-Type Difference Equation xn+1=max{1/xn,An/xn-1}
and Applied Analysis 3 Lemma 2.5. Let {xn}n −1 be a positive solution of 1.1 and limn→∞Pn S. Then S lim supn→∞xn. Proof. Since Pn is a subsequence of xn, it follows that S ≤ lim sup n→∞ xn. 2.6 On the other hand, by xn 1 ≤ Pn for all n ≥ 1, we obtain lim sup n→∞ xn ≤ lim sup n→∞ Pn S. 2.7 The proof is complete. Remark 2.6. Let {xn}n −1 be a positive solution of 1.1 . By Lemma 2.2, we see that i...
متن کاملLong-Term Behavior of Solutions of the Difference Equation xn+1=xn-1xn-2-1
and Applied Analysis 3 Proof. Assume that xN xN 2k and xN 1 xN 2k 1, for every k ∈ N0, and some N ≥ −2, with xN / xN 1. Then, we have xN 4 xN 2xN 1 − 1 xNxN 1 − 1 xN 3 xN 1. 2.4 From this and since xN 4 xN , we obtain a contradiction, finishing the proof of the result. Theorem 2.3. There are no periodic or eventually periodic solutions of 1.1 with prime period three. Proof. If xN xN 3k, xN 1 xN...
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2011
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v31i1.14432